Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.212
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E407-E416, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324261

RESUMO

The tricarboxylic acid (TCA) cycle metabolite fumarate nonenzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate nonenzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia. To quantify the stoichiometry of the succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC), which was then esterified. Itaconate-derived 2,3-DCP, but not fumarate-derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57% to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore "succinate moiety" may better describe the antigen recognized.NEW & NOTEWORTHY Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.


Assuntos
Compostos Alílicos , Cisteína , Cisteína/análogos & derivados , Hidrocarbonetos Clorados , Doenças Metabólicas , Succinatos , Humanos , Cisteína/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas , Fumaratos/metabolismo
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365228

RESUMO

The short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane-despite being energetically feasible. Here we report two independent bacterial enrichments performing anaerobic ethane and butane oxidation, respectively, coupled to nitrate reduction to dinitrogen gas and ammonium. Isotopic 13C- and 15N-labelling experiments, mass and electron balance tests, and metabolite and meta-omics analyses collectively reveal that the recently described propane-oxidizing "Candidatus Alkanivorans nitratireducens" was also responsible for nitrate-dependent anaerobic oxidation of the SCGAs in both these enrichments. The complete genome of this species encodes alkylsuccinate synthase genes for the activation of ethane/butane via fumarate addition. Further substrate range tests confirm that "Ca. A. nitratireducens" is metabolically versatile, being able to degrade ethane, propane, and butane under anoxic conditions. Moreover, our study proves nitrate as an additional electron sink for ethane and butane in anaerobic environments, and for the first time demonstrates the use of the fumarate addition pathway in anaerobic ethane oxidation. These findings contribute to our understanding of microbial metabolism of SCGAs in anaerobic environments.


Assuntos
Etano , Nitratos , Etano/metabolismo , Nitratos/metabolismo , Propano/metabolismo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Butanos/metabolismo , Gases/metabolismo , Fumaratos/metabolismo
3.
Biomater Adv ; 157: 213714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096647

RESUMO

Current treatment approaches in clinics to treat the infectious lesions have partial success thus demanding the need for development of advanced treatment modalities. In this study we fabricated an organic-inorganic composite of polypropylene fumarate (PPF) and nanohydroxyapatite (nHAP) by photo-crosslinking as a carrier of two clinically used antibiotics, ciprofloxacin (CIP) and rifampicin (RFP) for the treatment of bone infections. Carboxy terminal-PPF was first synthesized by cis-trans isomerization of maleic anhydride which was then photo-crosslinked using diethylfumarate (DEF) as crosslinker and bis-acylphosphine oxide (BAPO) as photo-initiator under UV lights (P). A composite of PPF and nHAP was fabricated by incorporating 40 % of nHAP in the polymeric matrix of PPF (PH) which was then characterized for different physicochemical parameters. CIP was added along with nHAP to fabricated CIPloaded composite scaffolds (PHC) which was then coated with RFP to synthesize RFP coated CIP-loaded scaffolds (PHCR). It was observed that there was a temporal separation in the in vitro release of two antibiotics after coating PHC with RFP with 80.48 ± 0.40 % release of CIP from PHC and 62.43 ± 0.21 % release of CIP from PHCR for a period of 60 days. Moreover, in vitro protein adsorption was also found to be maximum in PHCR (154.95 ± 0.07 µg/mL) as observed in PHC (75.42 ± 0.06 µg/mL), PH (24.47 ± 0.08 µg/mL) and P alone (4.47 ± 0.02 µg/mL). The scaffolds were also evaluated using in vivo infection model to assess their capacity in reducing the bacterial burden at the infection site. The outcome of this study suggests that RFP coated CIP-loaded PPF composite scaffolds could reduce bacterial burden and simultaneously augment bone healing during infection related fractures.


Assuntos
Antibacterianos , Polipropilenos , Pirenos , Polipropilenos/química , Polipropilenos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fumaratos/química , Fumaratos/metabolismo , Polímeros
4.
Nat Commun ; 14(1): 7227, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945607

RESUMO

The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Microbiota , Animais , Humanos , Coelhos , Malatos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Intestinos/microbiologia , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli O157/genética , Fumaratos/metabolismo , Infecções por Escherichia coli/microbiologia , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a DNA/metabolismo
5.
Front Endocrinol (Lausanne) ; 14: 1274239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867526

RESUMO

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells, holding significant clinical importance due to their capacity for excessive catecholamine secretion and associated cardiovascular complications. Roughly 80% of cases are associated with genetic mutations. Based on the functionality of these mutated genes, PPGLs can be categorized into distinct molecular clusters: the pseudohypoxia signaling cluster (Cluster-1), the kinase signaling cluster (Cluster-2), and the WNT signaling cluster (Cluster-3). A pivotal factor in the pathogenesis of PPGLs is hypoxia-inducible factor-2α (HIF2α), which becomes upregulated even under normoxic conditions, activating downstream transcriptional processes associated with pseudohypoxia. This adaptation provides tumor cells with a growth advantage and enhances their ability to thrive in adverse microenvironments. Moreover, pseudohypoxia disrupts immune cell communication, leading to the development of an immunosuppressive tumor microenvironment. Within Cluster-1a, metabolic perturbations are particularly pronounced. Mutations in enzymes associated with the tricarboxylic acid (TCA) cycle, such as succinate dehydrogenase (SDHx), fumarate hydratase (FH), isocitrate dehydrogenase (IDH), and malate dehydrogenase type 2 (MDH2), result in the accumulation of critical oncogenic metabolic intermediates. Notable among these intermediates are succinate, fumarate, and 2-hydroxyglutarate (2-HG), which promote activation of the HIFs signaling pathway through various mechanisms, thus inducing pseudohypoxia and facilitating tumorigenesis. SDHx mutations are prevalent in PPGLs, disrupting mitochondrial function and causing succinate accumulation, which competitively inhibits α-ketoglutarate-dependent dioxygenases. Consequently, this leads to global hypermethylation, epigenetic changes, and activation of HIFs. In FH-deficient cells, fumarate accumulation leads to protein succination, impacting cell function. FH mutations also trigger metabolic reprogramming towards glycolysis and lactate synthesis. IDH1/2 mutations generate D-2HG, inhibiting α-ketoglutarate-dependent dioxygenases and stabilizing HIFs. Similarly, MDH2 mutations are associated with HIF stability and pseudohypoxic response. Understanding the intricate relationship between metabolic enzyme mutations in the TCA cycle and pseudohypoxic signaling is crucial for unraveling the pathogenesis of PPGLs and developing targeted therapies. This knowledge enhances our comprehension of the pivotal role of cellular metabolism in PPGLs and holds implications for potential therapeutic advancements.


Assuntos
Neoplasias das Glândulas Suprarrenais , Dioxigenases , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/patologia , Ciclo do Ácido Cítrico/genética , Ácidos Cetoglutáricos , Paraganglioma/patologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Mutação , Succinatos , Ácido Succínico , Transdução de Sinais/genética , Fumaratos/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Microambiente Tumoral
6.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37906508

RESUMO

Anaerobic bacteria often use antiporters DcuB (malate/succinate antiport) or DcuA (l-aspartate/succinate antiport) for the excretion of succinate during fumarate respiration. The rumen bacterium Actinobacillus succinogenes is able to produce large amounts of succinate by fumarate respiration, using the DcuB-type transporter DcuE for l-malate/succinate antiport. Asuc_0142 was annotated as a second DcuB-type transporter. Deletion of Asuc_0142 decreased the uptake rate for l-[14C]aspartate into A. succinogenes cells. Properties of transport by heterologously expressed Asuc_0142 were investigated in an Escherichia coli mutant deficient of anaerobic C4DC transporters. Expression of Asuc_0142 resulted in high uptake activity for l-[14C]fumarate or l-[14C]aspartate, but the former showed a strong competitive inhibition by l-aspartate. In E. coli loaded with l-[14C]aspartate, [14C]succinate or [14C]fumarate, extracellular C4DCs initiated excretion of the intracellular substrates, with a preference for l-aspartateex/succinatein or l-aspartateex/fumaratein antiport. These findings indicate that Asuc_0142 represents a DcuA-type transporter for l-aspartate uptake and l-aspartateex/C4DCin antiport, differentiating it from the DcuB-type transporter DcuE for l-malateex/succinatein antiport. Sequence analysis and predicted structural characteristics confirm structural similarity of Asuc_0142 to DcuA, and Asuc_0142 was thus re-named as DcuAAs. The bovine rumen fluid contains l-aspartate (99.6 µM), whereas fumarate and l-malate are absent. Therefore, bovine rumen colonisers depend on l-aspartate as an exogenous substrate for fumarate respiration. A. succinogenes encodes HemG (protoporphyrinogen oxidase) and PyrD (dihydroorotate dehydrogenase) for haem and pyrimidine biosynthesis. The enzymes require fumarate as an electron acceptor, suggesting an essential role for l-aspartate, DcuAAs, and fumarate respiration for A. succinogenes growing in the bovine rumen.


Assuntos
Proteínas de Escherichia coli , Malatos , Animais , Bovinos , Malatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Anaerobiose , Fumaratos/metabolismo , Succinatos/metabolismo , Ácido Succínico/metabolismo
7.
Biol Reprod ; 109(3): 356-366, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37427962

RESUMO

Sperm storage by females after mating for species-dependent periods is used widely among animals with internal fertilization to allow asynchrony between mating and ovulation. Many mammals store sperm in the lower oviduct where specific glycans on oviduct epithelial cells retain sperm to form a reservoir. Binding to oviduct cells suppresses sperm intracellular Ca2+ and increases sperm longevity. We investigated the mechanisms by which a specific oviduct glycan, 3-O-sulfated Lewis X trisaccharide (suLeX), prolongs the lifespan of porcine sperm. Using targeted metabolomics, we found that binding to suLeX diminishes the abundance of 4-hydroxybenzoic acid, the precursor to ubiquinone (also known as Coenzyme Q), 30 min after addition. Ubiquinone functions as an electron acceptor in the electron transport chain (ETC). 3-O-sulfated Lewis X trisaccharide also suppressed the formation of fumarate. A component of the citric acid cycle, fumarate is synthesized by succinate-coenzyme Q reductase, which employs ubiquinone and is also known as Complex II in the ETC. Consistent with the reduced activity of the ETC, the production of harmful reactive oxygen species (ROS) was diminished. The enhanced sperm lifespan in the oviduct may be because of suppressed ROS production because high ROS concentrations have toxic effects on sperm.


Assuntos
Longevidade , Ubiquinona , Humanos , Feminino , Masculino , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , Sêmen/metabolismo , Oviductos , Espermatozoides/metabolismo , Polissacarídeos/metabolismo , Trissacarídeos/metabolismo , Fumaratos/metabolismo , Mamíferos/metabolismo
8.
Appl Environ Microbiol ; 89(7): e0086823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367298

RESUMO

Shewanella oneidensis MR-1 is a facultative anaerobe that grows by respiration using a variety of electron acceptors. This organism serves as a model to study how bacteria thrive in redox-stratified environments. A glucose-utilizing engineered derivative of MR-1 has been reported to be unable to grow in glucose minimal medium (GMM) in the absence of electron acceptors, despite this strain having a complete set of genes for reconstructing glucose to lactate fermentative pathways. To gain insights into why MR-1 is incapable of fermentative growth, this study examined a hypothesis that this strain is programmed to repress the expression of some carbon metabolic genes in the absence of electron acceptors. Comparative transcriptomic analyses of the MR-1 derivative were conducted in the presence and absence of fumarate as an electron acceptor, and these found that the expression of many genes involved in carbon metabolism required for cell growth, including several tricarboxylic acid (TCA) cycle genes, was significantly downregulated in the absence of fumarate. This finding suggests a possibility that MR-1 is unable to grow fermentatively on glucose in minimal media owing to the shortage of nutrients essential for cell growth, such as amino acids. This idea was demonstrated in subsequent experiments that showed that the MR-1 derivative fermentatively grows in GMM containing tryptone or a defined mixture of amino acids. We suggest that gene regulatory circuits in MR-1 are tuned to minimize energy consumption under electron acceptor-depleted conditions, and that this results in defective fermentative growth in minimal media. IMPORTANCE It is an enigma why S. oneidensis MR-1 is incapable of fermentative growth despite having complete sets of genes for reconstructing fermentative pathways. Understanding the molecular mechanisms behind this defect will facilitate the development of novel fermentation technologies for the production of value-added chemicals from biomass feedstocks, such as electro-fermentation. The information provided in this study will also improve our understanding of the ecological strategies of bacteria living in redox-stratified environments.


Assuntos
Aminoácidos , Shewanella , Fermentação , Aminoácidos/metabolismo , Shewanella/metabolismo , Glucose/metabolismo , Fumaratos/metabolismo , Suplementos Nutricionais
9.
NMR Biomed ; 36(10): e4965, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37148156

RESUMO

Imaging the metabolism of [2,3-2 H2 ]fumarate to produce malate can be used to detect tumor cell death post-treatment. Here, we assess the sensitivity of the technique for detecting cell death by lowering the concentration of injected [2,3-2 H2 ]fumarate and by varying the extent of tumor cell death through changes in drug concentration. Mice were implanted subcutaneously with human triple negative breast cancer cells (MDA-MB-231) and injected with 0.1, 0.3, and 0.5 g/kg [2,3-2 H2 ]fumarate before and after treatment with a multivalent TRAlL-R2 agonist (MEDI3039) at 0.1, 0.4, and 0.8 mg/kg. Tumor conversion of [2,3-2 H2 ]fumarate to [2,3-2 H2 ]malate was assessed from a series of 13 spatially localized 2 H MR spectra acquired over 65 min using a pulse-acquire sequence with a 2-ms BIR4 adiabatic excitation pulse. Tumors were then excised and stained for histopathological markers of cell death: cleaved caspase 3 (CC3) and DNA damage (terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]). The rate of malate production and the malate/fumarate ratio plateaued at tumor fumarate concentrations of 2 mM, which were obtained with injected [2,3-2 H2 ]fumarate concentrations of 0.3 g/kg and above. Tumor malate concentration and the malate/fumarate ratio increased linearly with the extent of cell death determined histologically. At an injected [2,3-2 H2 ]fumarate concentration of 0.3 g/kg, 20% CC3 staining corresponded to a malate concentration of 0.62 mM and a malate/fumarate ratio of 0.21. Extrapolation indicated that there would be no detectable malate at 0% CC3 staining. The use of low and nontoxic fumarate concentrations and the production of [2,3-2 H2 ]malate at concentrations that are within the range that can be detected clinically suggest this technique could translate to the clinic.


Assuntos
Malatos , Neoplasias , Humanos , Animais , Camundongos , Malatos/metabolismo , Morte Celular , Espectroscopia de Ressonância Magnética , Fumaratos/metabolismo
10.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175997

RESUMO

Reverse electron transfer in mitochondrial complex II (CII) plays an important role in hypoxia/anoxia, in particular, in ischemia, when the blood supply to an organ is disrupted and oxygen is not available. A computational model of CII was developed in this work to facilitate the quantitative analysis of the kinetics of quinol-fumarate reduction as well as ROS production during reverse electron transfer in CII. The model consists of 20 ordinary differential equations and 7 moiety conservation equations. The parameter values were determined at which the kinetics of electron transfer in CII in both forward and reverse directions would be explained simultaneously. The possibility of the existence of the "tunnel diode" behavior in the reverse electron transfer in CII, where the driving force is QH2, was tested. It was found that any high concentrations of QH2 and fumarate are insufficient for the appearance of a tunnel effect. The results of computer modeling show that the maximum rate of succinate production cannot provide a high concentration of succinate in ischemia. Furthermore, computational modeling results predict a very low rate of ROS production, about 50 pmol/min/mg mitochondrial protein, which is considerably less than 1000 pmol/min/mg protein observed in CII in forward direction.


Assuntos
Elétrons , Succinato Desidrogenase , Succinato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Succinatos , Simulação por Computador , Fumaratos/metabolismo , Cinética
11.
Cell Metab ; 35(6): 961-978.e10, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178684

RESUMO

Metabolic alterations in the microenvironment significantly modulate tumor immunosensitivity, but the underlying mechanisms remain obscure. Here, we report that tumors depleted of fumarate hydratase (FH) exhibit inhibition of functional CD8+ T cell activation, expansion, and efficacy, with enhanced malignant proliferative capacity. Mechanistically, FH depletion in tumor cells accumulates fumarate in the tumor interstitial fluid, and increased fumarate can directly succinate ZAP70 at C96 and C102 and abrogate its activity in infiltrating CD8+ T cells, resulting in suppressed CD8+ T cell activation and anti-tumor immune responses in vitro and in vivo. Additionally, fumarate depletion by increasing FH expression strongly enhances the anti-tumor efficacy of anti-CD19 CAR T cells. Thus, these findings demonstrate a role for fumarate in controlling TCR signaling and suggest that fumarate accumulation in the tumor microenvironment (TME) is a metabolic barrier to CD8+ T cell anti-tumor function. And potentially, fumarate depletion could be an important strategy for tumor immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Fumaratos/farmacologia , Fumaratos/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo , Transdução de Sinais
12.
J Chem Inf Model ; 63(11): 3510-3520, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37196341

RESUMO

The interconversion between fumarate and succinate is fundamental to the energy metabolism of nearly all organisms. This redox reaction is catalyzed by a large family of enzymes, fumarate reductases and succinate dehydrogenases, using hydride and proton transfers from a flavin cofactor and a conserved Arg side-chain. These flavoenzymes also have substantial biomedical and biotechnological importance. Therefore, a detailed understanding of their catalytic mechanisms is valuable. Here, calibrated electronic structure calculations in a cluster model of the active site of the Fcc3 fumarate reductase were employed to investigate various reaction pathways and possible intermediates in the enzymatic environment and to dissect interactions that contribute to catalysis of fumarate reduction. Carbanion, covalent adduct, carbocation, and radical intermediates were examined. Significantly lower barriers were obtained for mechanisms via carbanion intermediates, with similar activation energies for hydride and proton transfers. Interestingly, the carbanion bound to the active site is best described as an enolate. Hydride transfer is stabilized by a preorganized charge dipole in the active site and by the restriction of the C1-C2 bond in a twisted conformation of the otherwise planar fumarate dianion. But, protonation of a fumarate carboxylate and quantum tunneling effects are not critical for catalysis of the hydride transfer. Calculations also suggest that the driving force for enzyme turnover is provided by regeneration of the catalytic Arg, either coupled with flavin reduction and decomposition of a proposed transient state or directly from the solvent. The detailed mechanistic description of enzymatic reduction of fumarate provided here clarifies previous contradictory views and provides new insights into catalysis by essential flavoenzyme reductases and dehydrogenases.


Assuntos
Prótons , Succinatos , Oxirredução , Catálise , Fumaratos/metabolismo , Flavinas/metabolismo , Cinética
13.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 866-877, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37184280

RESUMO

Dendritic cells (DCs) are important targets for eliciting allograft rejection after transplantation. Previous studies have demonstrated that metabolic reprogramming of DCs can transform their immune functions and induce their differentiation into tolerogenic DCs. In this study, we aim to investigate the protective effects and mechanisms of monomethyl fumarate (MMF), a bioactive metabolite of fumaric acid esters, in a mouse model of allogeneic heart transplantation. Bone marrow-derived DCs are harvested and treated with MMF to determine the impact of MMF on the phenotype and immunosuppressive function of DCs by flow cytometry and T-cell proliferation assays. RNA sequencing and Seahorse analyses are performed for mature DCs and MMF-treated DCs (MMF-DCs) to investigate the underlying mechanism. Our results show that MMF prolongs the survival time of heart grafts and inhibits the activation of DCs in vivo. MMF-DCs exhibit a tolerogenic phenotype and function in vitro. RNA sequencing and Seahorse analyses reveal that MMF activates the Nrf2 pathway and mediates metabolic reprogramming. Additionally, MMF-DC infusion prolongs cardiac allograft survival, induces regulatory T cells, and inhibits T-cell activation. MMF prevents allograft rejection in mouse heart transplantation by inducing tolerogenic DCs.


Assuntos
Transplante de Coração , Animais , Camundongos , Linfócitos T Reguladores , Fumaratos/metabolismo , Células Dendríticas , Tolerância Imunológica , Rejeição de Enxerto/prevenção & controle , Camundongos Endogâmicos C57BL
14.
Meat Sci ; 201: 109176, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37023594

RESUMO

Long-term feeding of high-concentrate (HC) diet causes the decrease of rumen pH, and induces subacute rumen acidosis (SARA), which results in metabolic disorders in sheep. This not only reduces animal performance, but also increases the risk of oxidative stress and inflammatory reaction. Disodium fumarate can improve the rumen buffering capacity and increase rumen pH. This experiment was conducted to investigate the effects of high concentrate diet on muscle quality, chemical composition, oxidative damage and lipid metabolism of Hu sheep, and the regulating effect of disodium fumarate. The results showed that HC diet induced SARA by reducing rumen pH value, thus causing oxidative stress and lipid metabolism disorder in longissimus lumborum (LL) muscle of Hu sheep, which also reduced meat quality by increasing shear force, drip loss, cooking loss, chewiness and hardness, and reducing the contents of crude fat and crude protein in LL muscle. However, disodium fumarate can improve meat quality of SARA Hu sheep by regulating rumen pH, inhibiting muscle oxidative stress and promoting lipid metabolism.


Assuntos
Fumaratos , Metabolismo dos Lipídeos , Ovinos , Animais , Fumaratos/análise , Fumaratos/metabolismo , Fumaratos/farmacologia , Dieta/veterinária , Rúmen/química , Músculos/metabolismo , Suplementos Nutricionais , Estresse Oxidativo , Ração Animal/análise , Concentração de Íons de Hidrogênio
15.
Adv Microb Physiol ; 82: 267-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36948656

RESUMO

C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIAGlc from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.


Assuntos
Proteínas de Escherichia coli , Fumaratos , Animais , Camundongos , Fumaratos/metabolismo , Fumaratos/farmacologia , Proteínas de Escherichia coli/genética , Enterobacteriaceae/metabolismo , Ácido Aspártico/metabolismo , Elétrons , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Escherichia coli/metabolismo , Respiração , Oxidantes/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
16.
Nature ; 615(7952): 490-498, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890227

RESUMO

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Assuntos
Fumarato Hidratase , Interferon beta , Macrófagos , Mitocôndrias , RNA Mitocondrial , Humanos , Argininossuccinato Sintase/metabolismo , Ácido Argininossuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiração Celular , Citosol/metabolismo , Fumarato Hidratase/antagonistas & inibidores , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Interferon beta/biossíntese , Interferon beta/imunologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lúpus Eritematoso Sistêmico/enzimologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Metabolômica , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mitocondrial/metabolismo
17.
Nature ; 615(7952): 499-506, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890229

RESUMO

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.


Assuntos
DNA Mitocondrial , Fumaratos , Imunidade Inata , Mitocôndrias , Animais , Camundongos , DNA Mitocondrial/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Rim/enzimologia , Rim/metabolismo , Rim/patologia , Citosol/metabolismo
18.
Antimicrob Agents Chemother ; 67(3): e0142822, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840588

RESUMO

Ascofuranone (AF), a meroterpenoid isolated from various filamentous fungi, including Acremonium egyptiacum, has been reported as a potential lead candidate for drug development against parasites and cancer. In this study, we demonstrated that AF and its derivatives are potent anthelminthic agents, particularly against Echinococcus multilocularis, which is the causative agent of alveolar echinococcosis. We measured the inhibitory activities of AF and its derivatives on the mitochondrial aerobic and anaerobic respiratory systems of E. multilocularis larvae. Several derivatives inhibited complex II (succinate:quinone reductase [SQR]; IC50 = 0.037 to 0.135 µM) and also complex I to III (NADH:cytochrome c reductase; IC50 = 0.008 to 0.401 µM), but not complex I (NADH:quinone reductase), indicating that mitochondrial complexes II and III are the targets. In particular, complex II inhibition in the anaerobic pathway was notable because E. multilocularis employs NADH:fumarate reductase (fumarate respiration), in addition to NADH oxidase (oxygen respiration), resulting in complete shutdown of ATP synthesis by oxidative phosphorylation. A structure-activity relationship study of E. multilocularis complex II revealed that the functional groups of AF are essential for inhibition. Binding mode prediction of AF derivatives to complex II indicated potential hydrophobic and hydrogen bond interactions between AF derivatives and amino acid residues within the quinone binding site. Ex vivo culture assays revealed that AF derivatives progressively reduced the viability of protoscoleces under both aerobic and anaerobic conditions. These findings confirm that AF and its derivatives are the first dual inhibitors of fumarate and oxygen respiration in E. multilocularis and are potential lead compounds in the development of anti-echinococcal drugs.


Assuntos
Echinococcus multilocularis , Parasitos , Animais , Parasitos/metabolismo , Echinococcus multilocularis/metabolismo , Fumaratos/metabolismo , NAD , Respiração
19.
mBio ; 14(1): e0330222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625597

RESUMO

Aminoglycosides (AG) have been used against Gram-negative bacteria for decades. Yet, how bacterial metabolism and environmental conditions modify AG toxicity is poorly understood. Here, we show that the level of AG susceptibility varies depending on the nature of the respiratory chain that Escherichia coli uses for growth, i.e., oxygen, nitrate, or fumarate. We show that all components of the fumarate respiratory chain, namely, hydrogenases 2 and 3, the formate hydrogenlyase complex, menaquinone, and fumarate reductase are required for AG-mediated killing under fumarate respiratory conditions. In addition, we show that the AAA+ ATPase RavA and its Von Wildebrand domain-containing partner, ViaA, are essential for AG to act under fumarate respiratory conditions. This effect was true for all AG that were tested but not for antibiotics from other classes. In addition, we show that the sensitizing effect of RavA-ViaA is due to increased gentamicin uptake in a proton motive force-dependent manner. Interestingly, the sensitizing effect of RavA-ViaA was prominent in poor energy conservation conditions, i.e., with fumarate, but dispensable under high energy conservation conditions, i.e., in the presence of nitrate or oxygen. We propose that RavA-ViaA can facilitate uptake of AG across the membrane in low-energy cellular states. IMPORTANCE Antibiotic resistance is a major public health, social, and economic problem. Aminoglycosides (AG) are known to be highly effective against Gram-negative bacteria, but their use is limited to life-threatening infections because of their nephrotoxicity and ototoxicity at therapeutic dose. Elucidation of AG-sensitization mechanisms in bacteria would allow reduced effective doses of AG. Here, we have identified the molecular components involved in anaerobic fumarate respiration that are required for AG to kill. In addition to oxidoreductases and menaquinone, this includes new molecular players, RavA, an AAA+ ATPase, and ViaA, its partner that has the VWA motif. Remarkably, the influence of RavA-ViaA on AG susceptibility varies according to the type of bioenergetic metabolism used by E. coli. This is a significant advance because anaerobiosis is well known to reduce the antibacterial activity of AG. This study highlights the critical importance of the relationship between culture conditions, metabolism, and antibiotic susceptibility.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Aminoglicosídeos/farmacologia , Nitratos/metabolismo , Vitamina K 2/metabolismo , Vitamina K 2/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Metabolismo Energético , Succinato Desidrogenase , Bactérias/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Fumaratos/farmacologia , Fumaratos/metabolismo , Anaerobiose , Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
20.
J Bacteriol ; 205(1): e0038922, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36475831

RESUMO

Bacteroides species can use fumarate and oxygen as terminal electron acceptors during cellular respiration. In the human gut, oxygen diffuses from intestinal epithelial cells supplying "nanaerobic" oxygen levels. Many components of the anaerobic respiratory pathway have been determined, but such analyses have not been performed for nanaerobic respiration. Here, we present genetic, biochemical, enzymatic, and mass spectrometry analyses to elucidate the nanaerobic respiratory pathway in Bacteroides fragilis. Under anaerobic conditions, the transfer of electrons from NADH to the quinone pool has been shown to be contributed by two enzymes, NQR and NDH2. We find that the activity contributed by each under nanaerobic conditions is 77 and 23%, respectively, similar to the activity levels under anaerobic conditions. Using mass spectrometry, we show that the quinone pool also does not differ under these two conditions and consists of a mixture of menaquinone-8 to menaquinone-11, with menaquinone-10 predominant under both conditions. Analysis of fumarate reductase showed that it is synthesized and active under anaerobic and nanaerobic conditions. Previous RNA sequencing data and new transcription reporter assays show that expression of the cytochrome bd oxidase gene does not change under these conditions. Under nanaerobic conditions, we find both increased CydA protein and increased cytochrome bd activity. Reduced-minus-oxidized spectra of membranes showed the presence of heme d when the bacteria were grown in the presence of protoporphyrin IX and iron under both anaerobic and nanaerobic conditions, suggesting that the active oxidase can be assembled with or without oxygen. IMPORTANCE By performing a comprehensive analysis of nanaerobic respiration in Bacteroides fragilis, we show that this organism maintains capabilities for anaerobic respiration on fumarate and nanaerobic respiration on oxygen simultaneously. The contribution of the two NADH:quinone oxidoreductases and the composition of the quinone pool are the same under both conditions. Fumarate reductase and cytochrome bd are both present, and which of these terminal enzymes is active in electron transfer depends on the availability of the final electron acceptor: fumarate or oxygen. The synthesis of cytochrome bd and fumarate reductase under both conditions serves as an adaptation to an environment with low oxygen concentrations so that the bacteria can maximize energy conservation during fluctuating environmental conditions or occupation of different spatial niches.


Assuntos
Bacteroides fragilis , Succinato Desidrogenase , Humanos , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Anaerobiose , Succinato Desidrogenase/metabolismo , Vitamina K 2 , NAD/metabolismo , Transporte de Elétrons , Citocromos/metabolismo , Quinonas/metabolismo , Respiração , Oxigênio/metabolismo , Fumaratos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...